If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.9x^2+5x-100=0
a = 4.9; b = 5; c = -100;
Δ = b2-4ac
Δ = 52-4·4.9·(-100)
Δ = 1985
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1985}=\sqrt{1*1985}=\sqrt{1}*\sqrt{1985}=1\sqrt{1985}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-1\sqrt{1985}}{2*4.9}=\frac{-5-1\sqrt{1985}}{9.8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+1\sqrt{1985}}{2*4.9}=\frac{-5+1\sqrt{1985}}{9.8} $
| 3(2n+6)=30+3n | | 32-8x=6(6-8x)-4 | | 3v+10=10v-9-9 | | 4(x+3)=-13-(4x-9) | | -7m-9=-7m+9-9m | | 10-8b=-4b-10 | | 6b-8=9b+10 | | 28/1+x=14 | | (2x+3)^3=27 | | 9f+8=10f+5 | | -7+13x=7.5 | | -5c-10=-2c+7+1 | | S−1.6x=4.9 | | | | | | 0=4(x+5)+8 | | .75x+5=-5.6x+8 | | -3+8=5x+24 | | 8-f=-6-3f | | 5(2+4)=4(3x+7) | | -4q-4=10q+10 | | 4(x+3)=-13- | | 24x-28=-4(7-6x | | -7-2s=-s | | 6+5y=7+6y | | 5(2x-6)-8x=12 | | 20-a=4+a | | -15-7r=2(r-3) | | -21-r=68 | | x²-18x+81=0 | | v+1/2=2 | | 7n^2-70n+175=0 |